
1 /**************************
2   server sens
3   ************************/
4 package main
5 import(
6     "fmt"
7     "log"
8     "net/http"
9     "sync"
10     "os"
11     "time"
12 //    rnd "math/rand"
13 //    "strconv"
14 )
15  
16 var mu sync.Mutex
17 var count, count_robots, view_client int64
18  
19 func main(){
20   port:="localhost:8000"
21   if len(os.Args)==2{
22     port=os.Args[1]
23   }
24   println(port)
25   fs:=http.FileServer(http.Dir("static"))
26   http.Handle("/static/", http.StripPrefix("/static/", fs))
27 //  http.HandleFunc("/",find_page)
28 /*  http.HandleFunc("/", func(w
29   http.ResponseWriter, r
30   http.Request){
31     http.ServeFile(w, r, "static/index.html")
32 }
33   //http.HandleFunc("/",home_page) */
34  /* errr:=http.ListenAndServe(port,nil)
35   if errr !=nil{
36      log.Fatal("ListenAndServei: ",errr)
37   }  */
38   http.HandleFunc("/",index)
39   http.HandleFunc("/hand",handler)
40   http.HandleFunc("/count",counter)
41   http.HandleFunc("/client",client)
42   http.HandleFunc("/client/list",client_list)
43   http.HandleFunc("/robots.txt",robots)
44   log.Fatal(http.ListenAndServe(port,nil))
45 }
46  
47 func client_list(w http.ResponseWriter, r *http.Request){
48   mu.Lock()
49   view_client++
50   mu.Unlock()
51   http.ServeFile(w, r, "clients.lst")
52 }
53  
54 func robots(w http.ResponseWriter, r *http.Request){
55   mu.Lock()
56   count_robots++
57   mu.Unlock()
58   http.ServeFile(w, r, "static/robots.txt")
59 }
60  
61 func index(w http.ResponseWriter, r *http.Request){
62   mu.Lock()
63   count++
64   mu.Unlock()
65   http.ServeFile(w, r, "static/index.html")
66 }
67  
68 func handler(w http.ResponseWriter, r *http.Request){
69   mu.Lock()



70   count++
71   mu.Unlock()
72   fmt.Fprintf(w, "%s %s %s\n", r.Method,r.URL,r.Proto)
73   for k,v:=range r.Header{
74       fmt.Fprintf(w, "Header[%q] = %q\n",k,v)
75   }
76   fmt.Fprintf(w,"Host = %q\n",r.Host)
77   fmt.Fprintf(w,"RemoteAddr = %q\n",r.RemoteAddr)
78   if err:=r.ParseForm();err!=nil{
79       log.Print(err)
80   }
81   for k,v:=range r.Form{
82       fmt.Fprintf(w,"Form[%q] = %q\n",k,v)
83   }
84 }
85  
86 func counter(w http.ResponseWriter, r *http.Request){
87   mu.Lock()
88   fmt.Fprintf(w, "Посещений: %d\nРоботов:%d\nView:%d",count,count_robots,view_client)
89   mu.Unlock()
90 }
91  
92 func client(w http.ResponseWriter,r *http.Request){
93     fmt.Println("<!--start client-->")
94     if err:=r.ParseForm() ;err != nil {
95         log.Print(err)
96     }
97     var frobot,ffio,femail,fphone,faddress string
98     frobot    = r.Form["product"][0]
99     ffio      = r.Form["fio"][0]
100     femail    = r.Form["email"][0]
101     fphone    = r.Form["phone"][0]
102     faddress  = r.Form["address"][0]
103     if frobot != "" {
104     }else{
105         t:=time.Now()
106         if ffio=="" && femail=="" && fphone=="" && faddress=="" {
107             http.ServeFile(w, r, "static/notdocum.htm")
108             /*fmt.Fprintf(w,"Пустое cообщение \n %v", t)*/
109         }else{
110             fmt.Printf("%v\n ФИО:   %s\n email: %s\n тел.:  %s\n адр.:  %s\n\nСчетчик:

%d\n",t,ffio,femail,fphone,faddress,count)
111             fnam:="clients.lst"
112             f,err:=os.OpenFile(fnam,os.O_APPEND|os.O_CREATE|os.O_WRONLY,0666)
113             if err !=nil {
114                  log.Fatal("not open file", err)
115                  return
116              }else{
117                 stro:=fmt.Sprintf("%v\n ФИО:   %s\n email: %s\n тел.:  %s\n адр.: 

%s\nПосещений: %d\nРоботов: %d\nПросмотров:
%d\n\n",t,ffio,femail,fphone,faddress,count,count_robots,view_client)

118                 if _,err= f.WriteString(stro);err != nil {
119                      log.Fatal("not save file", err)
120                      return
121                  }
122                 defer f.Close()
123                 http.ServeFile(w, r, "static/pechkin.htm")
124                 /*fmt.Fprintf(w,"<h2>Сообщение доставлено</h2><p>%v</p>", t)*/
125             }
126         }
127     }
128  
129 }


