OooNOOUEWNRE

/**********

* molab.h
* sampl
X *******/

#define DEVNAM "olab" // wMsa ycTponctBa

#define LEN MSG 255 // DnuHbl 6ydepoB ycTponcTBa

#define LOG(...) if(debug !=0) printk(KERN INFO "! " VA ARGS)
#define MIN(A, B) ((A<B) ? A : B)

MODULE_LICENSE("GPL");
MODULE_AUTHOR("author");
MODULE_VERSION("1.2");
/**********

* molab.c

* sampl
% ********/

#include <linux/module.h>
#include <linux/fs.h>
#include <asm/uaccess.h>
#include <linux/miscdevice.h>
#include <linux/slab.h>
#include "./molab.h"

static int mode = 0; // oTkpbiTMe: O - 6e3 KoHTponsi, 1 - edWHMYHOe, 2 - MHOXECTBEHHOEe
module param(mode, int, S IRUGO);

static int debug = 0;

module param(debug, int, S IRUGO);

static int dev open = 0;

struct molab data { // obnacTb [OaHHbIX OpaiBepa:
char buf[LEN MSG + 1]; // 6ydep maHHbIX
int odd; // NpU3HaK Ha4vana 4TeHusd
b

static int molab open(struct inode *n, struct file *f) {
LOG("open - node: %p, file: %p, refcount: %d", n, f,
module refcount(THIS MODULE));
if(dev _open) {
LOG("device /dev/%s is busy", DEVNAM);
return -EBUSY;
}
if(1 == mode) dev_open++;
if(2 == mode) {
struct molab data *data;
f->private data = kmalloc(sizeof(struct molab data), GFP_KERNEL);
if(NULL == f->private data) {
LOG("memory allocation error");
return -ENOMEM;
}
data = (struct molab data*)f->private data;
strcpy(data->buf, "dynamic: not initialized!"); // puHamuueckuu b6ydep
data->odd = 0;
}

return 0;

}

static int molab release(struct inode *n, struct file *f) {
LOG("close - node: %p, file: %p, refcount: %d", n, f,
module refcount(THIS MODULE));
if(1 == mode) dev open--;
if(== mode) kfree(f->private data);

return 0;
}
static struct molab data* get buffer(struct file *f) {
static struct molab data static buf = { "static: not initialized!", 0 }; //

cTatudeckun bydep

67 return 2 == mode ? (struct molab data*)f->private data : &static buf;

68 }

69

70 // uTeHue u3 /dev/mopen :

71 static ssize t molab read(struct file *f, char *buf, size t count, loff t *pos) {

72 struct molab data* data = get buffer(f);

73 LOG("read - file: %p, read from %p bytes %d; refcount: %d",
74 f, data, count, module refcount(THIS MODULE));

75 if(0 == data->odd) {

76 int res = copy to user((void*)buf, data->buf, strlen(data->buf));
77 data->odd = 1;

78 put user('\n', buf + strlen(data->buf));

79 res = strlen(data->buf) + 1;

80 LOG("return bytes : %d", res);

81 return res;

82 }

83 data->odd = 0;

84 LOG("return : EOF");

85 return 0;

86 }

87

88 // 3anucb B /dev/mopen :
89 static ssize t molab write(struct file *f, const char *buf, size t count, loff t *pos)

{
90 int res, len = MIN(count, LEN MSG);
91 struct molab data* data = get buffer(f);
92 LOG("write - file: %p, write to %p bytes %d; refcount: %d",
93 f, data, count, module refcount(THIS MODULE));
94 res = copy_from user(data->buf, (void*)buf, len);
95 if('\n' == data->buf[len -1]) data->buf[len -1] = '\0';
96 else data->buf[len] = '\0';
97 LOG("put bytes : %d", len);
98 return len;
99 }
100
101 static const struct file operations molab fops = {
102 .owner = THIS MODULE,
103 .open = molab open,
104 .release = molab release,
105 . read = molab read,
106 .write = molab write,
107 };
108
109 static struct miscdevice molab dev = {
110 MISC DYNAMIC MINOR, DEVNAM, &molab fops
111 };
112
113 static int init molab init(void) {
114 int ret = misc _register(&molab dev);
115 if(ret) { LOG("unable to register %s misc device", DEVNAM);
116 }else{ LOG("installed device /dev/%s in mode %d", DEVNAM, mode); }
117 return ret;
118 }
119
120 static void exit molab exit(void) {
121 LOG("released device /dev/%s", DEVNAM);
122 misc deregister(&molab dev);
123 }

124 module init(molab init);

125 module exit(molab exit);

126

127 /* Makefile */

128 CURRENT = $(shell uname -r)

129 KDIR = /lib/modules/$(CURRENT) /build
130 PWD = $(shell pwd)

131 DEST = /lib/modules/$(CURRENT)/misc
132

133 TARGET = molab

134 obj-m := $(TARGET) .o

135
136
137
138
139
140
141
142
143
144
145

default:

clean:

$(MAKE) -C $(KDIR) M=$(PWD) modules

@rm
@rm
@rm
@rm

-f *.0 .*.cmd .*.flags *.mod.c *.order
-f .*.*.cmd *.symvers *~ *_*~ TODO.*
-fR .tmp*

-rf .tmp_versions

