
1 /**********
2 * molab.h
3 * sampl
4 * *******/
5
6 #define DEVNAM "olab" // имя устройства
7 #define LEN_MSG 255 // длины буферов устройства
8 #define LOG(...) if(debug !=0) printk(KERN_INFO "! "__VA_ARGS__)
9 #define MIN(A, B) ((A<B) ? A : B)
10
11 MODULE_LICENSE("GPL");
12 MODULE_AUTHOR("author");
13 MODULE_VERSION("1.2");
14 /**********
15 * molab.c
16 * sampl
17 * ********/
18
19 #include <linux/module.h>
20 #include <linux/fs.h>
21 #include <asm/uaccess.h>
22 #include <linux/miscdevice.h>
23 #include <linux/slab.h>
24 #include "./molab.h"
25
26
27 static int mode = 0; // открытие: 0 - без контроля, 1 - единичное, 2 - множественное
28 module_param(mode, int, S_IRUGO);
29 static int debug = 0;
30 module_param(debug, int, S_IRUGO);
31
32 static int dev_open = 0;
33 struct molab_data { // область данных драйвера:
34 char buf[LEN_MSG + 1]; // буфер данных
35 int odd; // признак начала чтения
36 };
37
38 static int molab_open(struct inode *n, struct file *f) {
39 LOG("open - node: %p, file: %p, refcount: %d", n, f,

module_refcount(THIS_MODULE));
40 if(dev_open) {
41 LOG("device /dev/%s is busy", DEVNAM);
42 return -EBUSY;
43 }
44 if(1 == mode) dev_open++;
45 if(2 == mode) {
46 struct molab_data *data;
47 f->private_data = kmalloc(sizeof(struct molab_data), GFP_KERNEL);
48 if(NULL == f->private_data) {
49 LOG("memory allocation error");
50 return -ENOMEM;
51 }
52 data = (struct molab_data*)f->private_data;
53 strcpy(data->buf, "dynamic: not initialized!"); // динамический буфер
54 data->odd = 0;
55 }
56 return 0;
57 }
58
59 static int molab_release(struct inode *n, struct file *f) {
60 LOG("close - node: %p, file: %p, refcount: %d", n, f,

module_refcount(THIS_MODULE));
61 if(1 == mode) dev_open--;
62 if(2 == mode) kfree(f->private_data);
63 return 0;
64 }
65 static struct molab_data* get_buffer(struct file *f) {
66 static struct molab_data static_buf = { "static: not initialized!", 0 }; //

статический буфер

67 return 2 == mode ? (struct molab_data*)f->private_data : &static_buf;
68 }
69
70 // чтение из /dev/mopen :
71 static ssize_t molab_read(struct file *f, char *buf, size_t count, loff_t *pos) {
72 struct molab_data* data = get_buffer(f);
73 LOG("read - file: %p, read from %p bytes %d; refcount: %d",
74 f, data, count, module_refcount(THIS_MODULE));
75 if(0 == data->odd) {
76 int res = copy_to_user((void*)buf, data->buf, strlen(data->buf));
77 data->odd = 1;
78 put_user('\n', buf + strlen(data->buf));
79 res = strlen(data->buf) + 1;
80 LOG("return bytes : %d", res);
81 return res;
82 }
83 data->odd = 0;
84 LOG("return : EOF");
85 return 0;
86 }
87
88 // запись в /dev/mopen :
89 static ssize_t molab_write(struct file *f, const char *buf, size_t count, loff_t *pos)

{
90 int res, len = MIN(count, LEN_MSG);
91 struct molab_data* data = get_buffer(f);
92 LOG("write - file: %p, write to %p bytes %d; refcount: %d",
93 f, data, count, module_refcount(THIS_MODULE));
94 res = copy_from_user(data->buf, (void*)buf, len);
95 if('\n' == data->buf[len -1]) data->buf[len -1] = '\0';
96 else data->buf[len] = '\0';
97 LOG("put bytes : %d", len);
98 return len;
99 }
100
101 static const struct file_operations molab_fops = {
102 .owner = THIS_MODULE,
103 .open = molab_open,
104 .release = molab_release,
105 .read = molab_read,
106 .write = molab_write,
107 };
108
109 static struct miscdevice molab_dev = {
110 MISC_DYNAMIC_MINOR, DEVNAM, &molab_fops
111 };
112
113 static int __init molab_init(void) {
114 int ret = misc_register(&molab_dev);
115 if(ret) { LOG("unable to register %s misc device", DEVNAM);
116 }else{ LOG("installed device /dev/%s in mode %d", DEVNAM, mode); }
117 return ret;
118 }
119
120 static void __exit molab_exit(void) {
121 LOG("released device /dev/%s", DEVNAM);
122 misc_deregister(&molab_dev);
123 }
124 module_init(molab_init);
125 module_exit(molab_exit);
126
127 /* Makefile */
128 CURRENT = $(shell uname -r)
129 KDIR = /lib/modules/$(CURRENT)/build
130 PWD = $(shell pwd)
131 DEST = /lib/modules/$(CURRENT)/misc
132
133 TARGET = molab
134 obj-m := $(TARGET).o

135
136 default:
137 $(MAKE) -C $(KDIR) M=$(PWD) modules
138
139 clean:
140 @rm -f *.o .*.cmd .*.flags *.mod.c *.order
141 @rm -f .*.*.cmd *.symvers *~ *.*~ TODO.*
142 @rm -fR .tmp*
143 @rm -rf .tmp_versions
144
145

